NEW STANDARD ACADEMY

Marks: 60
Date : 29-04-24
CLASS : $\mathbf{1 2}^{\text {TH }}$

PHYSICS

1. Calculate the work required to decrease the side of triangle to a in following figure

2. The electric field in a region is given by $\vec{E}=\left(\frac{A}{x^{4}}\right) \hat{\jmath}$. What is the potential in the region?
3. Determine the electric field strength Vector if the the potential of this field depends upon x, y coordinates as $\mathrm{V}=\mathrm{axy}$.
4. By using Gauss law, Find electric field just outside the cube having 3 dipoles placed inside it of dipole moment $4 \mu \mathrm{~cm}$ each \& seperated with 4 mm form charges.
5. Find work done in following figure

Given that $\mathrm{AC}=2 \mathrm{~m}, \quad \angle \mathrm{~A}=30^{\circ}$
$\vec{E}=4 \hat{\imath} \mathrm{~N} / \mathrm{C}$
$\mathrm{q}_{0=2} \mu c \quad$ is moved from A to c
6. Electric dipole momemt of dipole is $9 \mu \mathrm{~cm}$, if the separation between charge is 4 mm .What is the charge on any one of the corner.
7. Given that $\vec{E}=4 x^{2} \hat{\imath}-y^{2} \hat{\jmath}+Z \hat{k} \& \vec{A}=$ $20 \hat{i}-\hat{j}$ calculate electric flux
8. Two point charge $100 \mu C$ and $5 \mu C$ are placed at point A and B respectively with $\mathrm{AB}=40 \mathrm{~cm}$. The work done by external Force in displacing the charge $5 \mu \mathrm{C}$ from B to C , where $\mathrm{Bc}=30$ cm , angle $\mathrm{ABC}=\frac{\pi}{2}$ and $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
9. There is an electric field E in x - direction. If the work done in moving a charge $0.2 \mu C$ through a distance of 2 metres along a line making an angle 60° with the x - axis is 4 J , what is the value of E ?
10. An electric charge of $20 \mu C$ is situated at the origin of X-Y co-ordinate system. The potential difference between the points $(5 \mathrm{a}, 0)$ and $(-3 a, 4 a)$ will be

CHEMISTRY

1. Write the cell reaction for the following equation also write half cell reactions
$\mathrm{Cd}_{(\mathrm{s})}+\mathrm{Nio}(\mathrm{OH})_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
$\mathrm{NI}(\mathrm{OH})_{2_{(s)}}+\mathrm{Cd}(\mathrm{OH})_{2_{(s)}}$
2. Write Ohm's law
3. Define the following terms
1) Resistivity
2) Specific conductance
4. Write Kohlrausch law of electrolysis for weak electrolytes
5. What do you mean by standard electrode potential
6. The Conductivity of $0.001028 \mathrm{~mol} \mathrm{~L}^{-1}$ acetic acid is $4.95 \times 10^{-5} \mathrm{Scm}^{-1}$ calculate its dissociation constant if $\Delta^{\circ} \mathrm{mfor}$ acetic acid is $390.5 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
7. Calculate the limiting molar conductivity of acetic acid at 298 K .given that at that temperature the limiting molar conductivities at infinite dilution of hydrochloric acid, Sodium chloride and sodium acetate are 426,126 and 91 $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
8. The following cell has a potential of $0.55 v$ at $25^{\circ} \mathrm{C}$
$\mathrm{Pt}_{(\mathrm{s})}$
$\left|H_{2}(1 \mathrm{bar})\right| H^{+}(\mathrm{aq})(? \mathrm{M})| | C l^{-}(1 \mathrm{M})\left|H g_{2} C l_{2(S)}\right| H g(1)$
What is the pH of the solution in the Anode Compartment?
(Given $\mathrm{E}^{\circ}=0.28 \mathrm{~V}$ for calomel electrode)
9. The resistance of 0.01 M solution of an electrolyte was found to be 210 Ohm at $25^{\circ} \mathrm{C}$. Calculate the molar conductance of the solution of $25^{\circ} \mathrm{C}$., if the cell constant is $0.88 \mathrm{~cm}^{-1}$
10. The electrical resistance of a column of $0.05 \mathrm{~mol} \mathrm{~L}^{-1} \cdot \mathrm{NaOH}$ solution of diameter 1 cm and length 50 cm is 5.55×10^{3} ohm. Calculate its resistivity, conductivity and molar conductivity.

BIOLOGY

1. How many kinds of phenotype and genotype would you expect is F_{2} generation in a monohybrid cross, give the example.
2. What are the characteristic features of truebreeding line?
3. With the help of a punnett square, find the $\%$ of heterozygous individual in a F^{2} population in a cross involving a true breeding pea plant with green pods and yellow pods respectively.
4. Mention the advantages of selecting pea plant for experiment by Mendel.
5. Define and design a test cross with an example.
6. a) Explain the phenomena of dominance and Co-dominance, taking ABO blood group as an example.
b) What is the phenotype of the following?
7. A di-hybrid, plant on self-pollination ($\mathrm{TtRr} \times T t R r$) produced 400 phenotype with 9 type of genotype. How many seeds will have genotype TtRr?
8. Define
i) Allele
ii) Heterozygous
iii) Hemizygous
iv) Homologous
9. What is law of segregation. Explain with example.
10 What is exception of mendelian law give the two examples

MATHS

 then $\mathrm{f}(\mathrm{x})$ is equal to
a) $\sin ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1} x$
b) $\sin ^{-1} x-\frac{\pi}{6}$
c) $\sin ^{-1} x+\frac{\pi}{6}$
d) None of these
2. The greatest and least values of $\left(\sin ^{-1} x\right)^{3}+$ $\left(\cos ^{-1} x\right)^{3}$ are
a) $\frac{-\pi}{2}, \frac{\pi}{2}$
b) $-\frac{\pi^{3}}{8}, \frac{\pi^{3}}{8}$
c) $\frac{\pi^{3}}{32}, \frac{7 \pi^{3}}{8}$
d) None of these
3. Find the maximum value of
$\left(\sec ^{-1} x\right)\left(\operatorname{cosec}^{-1} x\right), x \geq 1$
Let $\mathrm{A}=\left[\begin{array}{ccc}-5 & -8 & -7 \\ 3 & 5 & 4 \\ 2 & 3 & 3\end{array}\right]$ and $B=\left[\begin{array}{l}x \\ y \\ 3\end{array}\right]$.
If $A B$ is a Scalar multiple $(\lambda \neq 0)$ of B then the point (x, y) lies on the whose
a) X-intercept is -1
b) Slope is-1
c) y-intercept is 1
d) distance from origin is 2
4. If A is a Square matrix of order 2 , then $-\operatorname{tr}\left(A^{2}\right)+(\operatorname{tr}(A))^{2}$ is equal to
a) 0
b) det.(A)
c) $2 \operatorname{det}$.(A)
d) $-\operatorname{det}$.(A)
5. If $\mathrm{A}=\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right]$ and $(A+B)^{2}=A^{2}+B^{2}+2 A B$ then
a) $a=-1$
b) $a=1$
c) $b=2$
d) $b=-2$
6. If $\mathrm{A}=\mathrm{k}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$ is a matrix such that
$\mathrm{AA}^{\mathrm{T}}=l$, then k is equal to
a) 1
b) $1 / 2$
c) $1 / 3$
d) $-1 / 3$
7. Let A be a 2×3 matrix whereas B be a 3×2 matrix. If det. $(A B)=4$, then the value of of det.(BA) is
a) -4
b) 2
c) -2
d) 0
8. For what value of x :
$\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ x\end{array}\right]=0$?

